THE HALOGENS - Group 17 (7)

General	٠	non-metals
General	•	non-metais

- exist as separate diatomic molecules.
- all have the electronic configuration $\dots ns^2 np^5$.

TRENDS

Appearance		F	Cl	Br	I
	Colour	yellow	green	red-brown	grey
	State (at RTP)	gas	gas	liquid	solid
Boiling Point	Increases down group	F	Cl	Br	I
	Boiling point / °C	-188	-34	58	183

- increased size makes induced diploe-dipole (V de W) interactions increase
- more energy is required to separate the molecules

Electronegativity Decreases down group	F	Cl	Br	I	
Electronegativity	4.0	3.0	2.8	2.5	
 increasing nuclear charge de electrons more, but there is 	•	eater numbe	r of protons s	should attract	
 increasing number of shells; 	∴ more	shielding a	nd less pull	on electron	S
 increasing atomic radius; 	: attrac	tion drops	off as dista	nce increase	S
Atomic size Increases down group	F	Cl	Br	I	
Covalent radius / nm	0.064	0.099	0.111	0.128	
Ionic size Increases down group Ionic radius / nm	F ⁻ 0.136	C <i>Г</i> 0.181	Br [−] 0.195	۲ [−] 0.216	

• The greater the atomic number the more electrons there are. These go into shells increasingly further from the nucleus.

• Ions are larger than atoms - repulsion due to added electron expands radius

Oxidising

power

2

- halogens are oxidising agents they need an electron to complete their octet
 - the oxidising power gets weaker down the group
 - the trend can be explained by considering the nucleus's attraction for the incoming electron which is affected by the...
 - increasing nuclear charge which should attract electrons more; but is offset by
 - increasing shielding
 - increasing atomic radius

This can be demonstrated by reacting the halogens with other halide ions.

chlorine oxidises bromide ions to bromine	$Cl_2 + 2Br^- \longrightarrow Br_2 + 2Cl^-$
chlorine oxidises iodide ions to iodine	$Cl_2 + 2l^- \longrightarrow l_2 + 2Cl^-$
bromine oxidises iodide ions to iodine	$Br_2 + 2l^- \longrightarrow l_2 + 2Br^-$

As a result of its **small size** and **high electronegativity**, fluorine can bring out the highest oxidation state in elements e.g. PF_5 (+5), SF_6 (+6), IF_7 (+7) and F_2O (+2).

Some reactions of chlorine

WaterHalogen reactivity with decreases down the group as oxidising power decreasesLitmus will be turned red then decolourised in chlorine water

 $Cl_2(g) + H_2O(I) \longrightarrow HCl(aq) + HOCl(aq)$ strong acid bleaches by oxidation

- *Q.1* What happens to the oxidation state of chlorine in this reaction?
- Q.2 Explain the colour changes of litmus.
- Q.3 What is the industrial importance of this reaction?

Alkalis Chlorine reacts with aqueous sodium hydroxide; the products vary with conditions.

cold, dilute $2NaOH(aq) + Cl_2(g) \longrightarrow NaCl(aq) + NaOCl(aq) + H_2O(l)$

The Halogens

HALIDE IONS

Reducing ability	 halide ions behave as reducing agents they give an electron to what they are reducing Cl> Cl + e⁻
Trend	least powerful $\mathbf{F}^- < \mathbf{C} \mathbf{\Gamma} < \mathbf{B} \mathbf{r}^- < \mathbf{I}^-$ most powerful reducing agent
Reason	As the ionic radius get larger it becomes easier to remove the outer electrons.
Example	The reaction between solid halides and concentrated sulphuric acid - see below

TESTING FOR HALIDE IONS

Silver

nitrate

- make a solution of the halide
 - acidify with dilute nitric acid prevents formation of other insoluble silver salts
 - add a few drops of silver nitrate solution
 - treat any precipitate with dilute ammonia solution
 - if a precipitate still exists, add concentrated ammonia solution

Halide ion	Precipitate	Colour	Solubility in dilute ammonia solution	Solubility in conc. ammonia solution
Chloride	AgC <i>l</i>	WHITE	SOLUBLE	SOLUBLE
Bromide	AgBr	CREAM	INSOLUBLE	SOLUBLE
lodide	Agl	YELLOW	INSOLUBLE	INSOLUBLE

- the halides are precipitated as follows
 Ag⁺(aq) + X⁻(aq) ----> Ag⁺X⁻(s)
- dissolving in ammonia gives the colourless diammine complex [Ag(NH₃)₂]⁺(aq)
- **Q.4** What use is made of silver salts ?

Alternative test for halides

Add concentrated sulphuric acid carefully to a solid halide

• add concentrated sulphuric acid carefully to a solid halide

- sulphuric acid displaces the weaker acids HCI, HBr, and HI from their salts
 - hydrogen halides all fume in moist air
 - as they **become more powerful reducing agents down the group** they can react further by reducing the sulphuric acid to lower oxidation states of sulphur.

Summary	Halide	Observation(s)	Product	O.S.	Reaction type	
	NaCl	misty fumes	HCI	-1	Displacement of Cl ⁻	
	NaBr	misty fumes	HBr	-1	Displacement of Br ⁻	AQA
		brown vapour	Br_2	0	Oxidation of Br ⁻	
		colourless gas	SO ₂	+4	Reduction of H ₂ SO ₄	
	Nal	misty fumes	HI	-1	Displacement of Cl [−]	
		purple vapour	I_2	0	Oxidation of I ⁻	
		colourless gas	SO ₂	+4	Reduction of H ₂ SO ₄	
		yellow solid	S	0	Reduction of H ₂ SO ₄	
		bad egg smell	H_2S	-2	Reduction of H ₂ SO ₄	

HYDROGEN HALIDES

Boiling points	At room temperature and p	t room temperature and pressure		II	colourless gases colourless liquid	
	boiling points HF 20°	с нс і	-85°C	HBr -6	9°C HI	-35°C
	The HF value is much hi	gher than e	pected due t	to hydro g	gen bonding	
Reducing ability	 Increases down the gro bond energy / kJ mol⁻¹ 	•	H-C <i>i</i> H	decreas -Br 166	es H-I 298	
Preparatio	n					
Displaceme	ent Chlorides are made by d NaCl _(s) + conc. H ₂ SO					
Direct combinatior	n Hydrogen halides can be H _{2(g)} + X _{2(g)}	•		ation		

Conc

 H_2SO_4

USES OF HALOGENS AND HALIDES

Chlorine, Cl ₂	 water purification - kills bacteria (toxic / chlorinated hydrocarbon formation) bleach solvents polymers - poly(chloroethene) or PVC CFC's
Fluorine, F_2	 CFC's polymers - PTFE poly(tetrafluoroethene) as used in non-stick frying pans, electrical insulation, waterproof clothing
Fluoride, F [−]	 helps prevent tooth decay - tin fluoride is added to toothpaste sodium fluoride is added to water supplies
Hydrogen fluoride, HF	 used to etch glass

Silver bromide, AgBr • used in photographic film

Q.4 The automatic addition of fluoride to public drinking water has always been controversial. Many people think it is a good thing as its use is linked to fewer fillings in children's teeth. However, it can cause permanent discolouration of teeth and liver damage.

Some people feel that taking fluoride should be a personal choice. What are your thoughts?

Q.5 • Why are some environmental campaigners demanding that chlorine is no longer used for purifying drinking water?

• Drinking bottled water bad for the environment - explain.

• Tap water or bottled water - which do you prefer?